當前位置:學問谷 >

行政範例 >總結 >

化學選修4知識點總結

化學選修4知識點總結

總結是在一段時間內對學習和工作生活等表現加以總結和概括的一種書面材料,它是增長才乾的一種好辦法,我想我們需要寫一份總結了吧。總結一般是怎麼寫的呢?下面是小編收集整理的化學選修4知識點總結,歡迎閲讀與收藏。

化學選修4知識點總結

化學選修4知識點總結1

1、化學電源

(1)鋅錳乾電池

負極反應:Zn→Zn2++2e-;

正極反應:2NH4++2e-→2NH3+H2;

(2)鉛蓄電池

負極反應:Pb+SO42-PbSO4+2e-

正極反應:PbO2+4H++SO42-+2e-PbSO4+2H2O

放電時總反應:Pb+PbO2+2H2SO4=2PbSO4+2H2O.

充電時總反應:2PbSO4+2H2O=Pb+PbO2+2H2SO4.

(3)氫氧燃料電池

負極反應:2H2+4OH-→4H2O+4e-

正極反應:O2+2H2O+4e-→4OH-

電池總反應:2H2+O2=2H2O

2、金屬的腐蝕與防護

(1)金屬腐蝕

金屬表面與周圍物質發生化學反應或因電化學作用而遭到破壞的過程稱為金屬腐蝕.

(2)金屬腐蝕的電化學原理

生鐵中含有碳,遇有雨水可形成原電池,鐵為負極,電極反應為:Fe→Fe2++2e-.水膜中溶解的氧氣被還原,正極反應為:O2+2H2O+4e-→4OH-,該腐蝕為“吸氧腐蝕”,總反應為:2Fe+O2+2H2O=2Fe(OH)2,Fe(OH)2又立即被氧化:4Fe(OH)2+2H2O+O2=4Fe(OH)3,Fe(OH)3分解轉化為鐵鏽.若水膜在酸度較高的環境下,正極反應為:2H++2e-→H2↑,該腐蝕稱為“析氫腐蝕”.

(3)金屬的防護

金屬處於乾燥的環境下,或在金屬表面刷油漆、陶瓷、瀝青、塑料及電鍍一層耐腐蝕性強的'金屬防護層,破壞原電池形成的條件.從而達到對金屬的防護;也可以利用原電池原理,採用犧牲陽極保護法.也可以利用電解原理,採用外加電流陰極保護法.

化學選修4知識點總結2

第一章、化學反應與能量轉化

化學反應的實質是反應物化學鍵的斷裂和生成物化學鍵的形成,化學反應過程中伴隨着能量的釋放或吸收。

一、化學反應的熱效應

1、化學反應的反應熱

(1)反應熱的概念:

當化學反應在一定的温度下進行時,反應所釋放或吸收的熱量稱為該反應在此温度下的熱效應,簡稱反應熱。用符號Q表示。

(2)反應熱與吸熱反應、放熱反應的關係。

Q>0時,反應為吸熱反應;Q<0時,反應為放熱反應。

(3)反應熱的測定

測定反應熱的儀器為量熱計,可測出反應前後溶液温度的變化,根據體系的熱容可計算出反應熱,計算公式如下:

Q=-C(T2-T1)

式中C表示體系的熱容,T1、T2分別表示反應前和反應後體系的温度。實驗室經常測定中和反應的反應熱。

2、化學反應的焓變

(1)反應焓變

物質所具有的能量是物質固有的性質,可以用稱為“焓”的物理量來描述,符號為H,單位為kJ·mol-1。

反應產物的總焓與反應物的總焓之差稱為反應焓變,用ΔH表示。

(2)反應焓變ΔH與反應熱Q的關係。

對於等壓條件下進行的化學反應,若反應中物質的能量變化全部轉化為熱能,則該反應的反應熱等於反應焓變,其數學表達式為:Qp=ΔH=H(反應產物)-H(反應物)。

(3)反應焓變與吸熱反應,放熱反應的關係:

ΔH>0,反應吸收能量,為吸熱反應。

ΔH<0,反應釋放能量,為放熱反應。

(4)反應焓變與熱化學方程式:

把一個化學反應中物質的變化和反應焓變同時表示出來的化學方程式稱為熱化學方程式,如:H2(g)+

O2(g)=H2O(l);ΔH(298K)=-285.8kJ·mol-1

書寫熱化學方程式應注意以下幾點:

①化學式後面要註明物質的聚集狀態:固態(s)、液態(l)、氣態(g)、溶液(aq)。

②化學方程式後面寫上反應焓變ΔH,ΔH的單位是J·mol-1或 kJ·mol-1,且ΔH後註明反應温度。

③熱化學方程式中物質的係數加倍,ΔH的數值也相應加倍。

3、反應焓變的計算

(1)蓋斯定律

對於一個化學反應,無論是一步完成,還是分幾步完成,其反應焓變一樣,這一規律稱為蓋斯定律。

(2)利用蓋斯定律進行反應焓變的計算。

常見題型是給出幾個熱化學方程式,合併出題目所求的熱化學方程式,根據蓋斯定律可知,該方程式的ΔH為上述各熱化學方程式的ΔH的代數和。

(3)根據標準摩爾生成焓,ΔfHmθ計算反應焓變ΔH。

對任意反應:aA+bB=cC+dD

ΔH=[cΔfHmθ(C)+dΔfHmθ(D)]-[aΔfHmθ(A)+bΔfHmθ(B)]

第二章、化學平衡

一、化學反應的速率

1、化學反應是怎樣進行的

(1)基元反應:能夠一步完成的反應稱為基元反應,大多數化學反應都是分幾步完成的。

(2)反應歷程:平時寫的化學方程式是由幾個基元反應組成的總反應。總反應中用基元反應構成的反應序列稱為反應歷程,又稱反應機理。

(3)不同反應的反應歷程不同。同一反應在不同條件下的反應歷程也可能不同,反應歷程的差別又造成了反應速率的不同。

2、化學反應速率

(1)概念:

單位時間內反應物的減小量或生成物的增加量可以表示反應的快慢,即反應的速率,用符號v表示。

(2)表達式:v=△c/△t

(3)特點

對某一具體反應,用不同物質表示化學反應速率時所得的數值可能不同,但各物質表示的`化學反應速率之比等於化學方程式中各物質的係數之比。

3、濃度對反應速率的影響

(1)反應速率常數(K)

反應速率常數(K)表示單位濃度下的化學反應速率,通常,反應速率常數越大,反應進行得越快。反應速率常數與濃度無關,受温度、催化劑、固體表面性質等因素的影響。

(2)濃度對反應速率的影響

增大反應物濃度,正反應速率增大,減小反應物濃度,正反應速率減小。

增大生成物濃度,逆反應速率增大,減小生成物濃度,逆反應速率減小。

(3)壓強對反應速率的影響

壓強隻影響氣體,對只涉及固體、液體的反應,壓強的改變對反應速率幾乎無影響。

壓強對反應速率的影響,實際上是濃度對反應速率的影響,因為壓強的改變是通過改變容器容積引起的。壓縮容器容積,氣體壓強增大,氣體物質的濃度都增大,正、逆反應速率都增加;增大容器容積,氣體壓強減小;氣體物質的濃度都減小,正、逆反應速率都減小。

4、温度對化學反應速率的影響

(1)經驗公式

阿倫尼烏斯總結出了反應速率常數與温度之間關係的經驗公式:

式中A為比例係數,e為自然對數的底,R為摩爾氣體常數量,Ea為活化能。

由公式知,當Ea>0時,升高温度,反應速率常數增大,化學反應速率也隨之增大。可知,温度對化學反應速率的影響與活化能有關。

(2)活化能Ea。

活化能Ea是活化分子的平均能量與反應物分子平均能量之差。不同反應的活化能不同,有的相差很大。活化能 Ea值越大,改變温度對反應速率的影響越大。

5、催化劑對化學反應速率的影響

(1)催化劑對化學反應速率影響的規律:

催化劑大多能加快反應速率,原因是催化劑能通過參加反應,改變反應歷程,降低反應的活化能來有效提高反應速率。

(2)催化劑的特點:

催化劑能加快反應速率而在反應前後本身的質量和化學性質不變。

催化劑具有選擇性。

催化劑不能改變化學反應的平衡常數,不引起化學平衡的移動,不能改變平衡轉化率。

二、化學反應條件的優化——工業合成氨

1、合成氨反應的限度

合成氨反應是一個放熱反應,同時也是氣體物質的量減小的熵減反應,故降低温度、增大壓強將有利於化學平衡向生成氨的方向移動。

2、合成氨反應的速率

(1)高壓既有利於平衡向生成氨的方向移動,又使反應速率加快,但高壓對設備的要求也高,故壓強不能特別大。

(2)反應過程中將氨從混合氣中分離出去,能保持較高的反應速率。

(3)温度越高,反應速率進行得越快,但温度過高,平衡向氨分解的方向移動,不利於氨的合成。

(4)加入催化劑能大幅度加快反應速率。

3、合成氨的適宜條件

在合成氨生產中,達到高轉化率與高反應速率所需要的條件有時是矛盾的,故應該尋找以較高反應速率並獲得適當平衡轉化率的反應條件:一般用鐵做催化劑,控制反應温度在700K左右,壓強範圍大致在1×107Pa~1×108Pa之間,並採用N2與H2分壓為1∶2.8的投料比。

三、化學反應的限度

1、化學平衡常數

(1)對達到平衡的可逆反應,生成物濃度的係數次方的乘積與反應物濃度的係數次方的乘積之比為一常數,該常數稱為化學平衡常數,用符號K表示。

(2)平衡常數K的大小反映了化學反應可能進行的程度(即反應限度),平衡常數越大,説明反應可以進行得越完全。

(3)平衡常數表達式與化學方程式的書寫方式有關。對於給定的可逆反應,正逆反應的平衡常數互為倒數。

(4)藉助平衡常數,可以判斷反應是否到平衡狀態:當反應的濃度商Qc與平衡常數Kc相等時,説明反應達到平衡狀態。

2、反應的平衡轉化率

(1)平衡轉化率是用轉化的反應物的濃度與該反應物初始濃度的比值來表示。如反應物A的平衡轉化率的表達式為:

α(A)=

(2)平衡正向移動不一定使反應物的平衡轉化率提高。提高一種反應物的濃度,可使另一反應物的平衡轉化率提高。

(3)平衡常數與反應物的平衡轉化率之間可以相互計算。

3、反應條件對化學平衡的影響

(1)温度的影響

升高温度使化學平衡向吸熱方向移動;降低温度使化學平衡向放熱方向移動。温度對化學平衡的影響是通過改變平衡常數實現的。

(2)濃度的影響

增大生成物濃度或減小反應物濃度,平衡向逆反應方向移動;增大反應物濃度或減小生成物濃度,平衡向正反應方向移動。

温度一定時,改變濃度能引起平衡移動,但平衡常數不變。化工生產中,常通過增加某一價廉易得的反應物濃度,來提高另一昂貴的反應物的轉化率。

(3)壓強的影響

ΔVg=0的反應,改變壓強,化學平衡狀態不變。

ΔVg≠0的反應,增大壓強,化學平衡向氣態物質體積減小的方向移動。

(4)勒夏特列原理

由温度、濃度、壓強對平衡移動的影響可得出勒夏特列原理:如果改變影響平衡的一個條件(濃度、壓強、温度等)平衡向能夠減弱這種改變的方向移動。

四、化學反應的方向

1、反應焓變與反應方向

放熱反應多數能自發進行,即ΔH<0的反應大多能自發進行。有些吸熱反應也能自發進行。如NH4HCO3與CH3COOH的反應。有些吸熱反應室温下不能進行,但在較高温度下能自發進行,如CaCO3高温下分解生成CaO、CO2。

2、反應熵變與反應方向

熵是描述體系混亂度的概念,熵值越大,體系混亂度越大。反應的熵變ΔS為反應產物總熵與反應物總熵之差。產生氣體的反應為熵增加反應,熵增加有利於反應的自發進行。

3、焓變與熵變對反應方向的共同影響

ΔH-TΔS<0反應能自發進行。

ΔH-TΔS=0反應達到平衡狀態。

ΔH-TΔS>0反應不能自發進行。

在温度、壓強一定的條件下,自發反應總是向ΔH-TΔS<0的方向進行,直至平衡狀態。

第三章、水溶液中的電離平衡

一、水溶液

1、水的電離

H2OH++OH-

水的離子積常數KW=[H+][OH-],25℃時,KW=1.0×10-14mol2·L-2。温度升高,有利於水的電離,KW增大。

2、溶液的酸鹼度

室温下,中性溶液:[H+]=[OH-]=1.0×10-7mol·L-1,pH=7

酸性溶液:[H+]>[OH-],[ H+]>1.0×10-7mol·L-1,pH<7

鹼性溶液:[H+]<[oh-],[oh-]>1.0×10-7mol·L-1,pH>7

3、電解質在水溶液中的存在形態

(1)強電解質

強電解質是在稀的水溶液中完全電離的電解質,強電解質在溶液中以離子形式存在,主要包括強酸、強鹼和絕大多數鹽,書寫電離方程式時用“=”表示。

(2)弱電解質

在水溶液中部分電離的電解質,在水溶液中主要以分子形態存在,少部分以離子形態存在,存在電離平衡,主要包括弱酸、弱鹼、水及極少數鹽,書寫電離方程式時用“”表示。

二、弱電解質的電離及鹽類水解

1、弱電解質的電離平衡。

(1)電離平衡常數

在一定條件下達到電離平衡時,弱電解質電離形成的各種離子濃度的乘積與溶液中未電離的分子濃度之比為一常數,叫電離平衡常數。

弱酸的電離平衡常數越大,達到電離平衡時,電離出的H+越多。多元弱酸分步電離,且每步電離都有各自的電離平衡常數,以第一步電離為主。

(2)影響電離平衡的因素,以CH3COOHCH3COO-+H+為例。

加水、加冰醋酸,加鹼、升温,使CH3COOH的電離平衡正向移動,加入CH3COONa固體,加入濃鹽酸,降温使CH3COOH電離平衡逆向移動。

2、鹽類水解

(1)水解實質

鹽溶於水後電離出的離子與水電離的H+或OH-結合生成弱酸或弱鹼,從而打破水的電離平衡,使水繼續電離,稱為鹽類水解。

(2)水解類型及規律

①強酸弱鹼鹽水解顯酸性。

NH4Cl+H2ONH3·H2O+HCl

②強鹼弱酸鹽水解顯鹼性。

CH3COONa+H2OCH3COOH+NaOH

③強酸強鹼鹽不水解。

④弱酸弱鹼鹽雙水解。

Al2S3+6H2O=2Al(OH)3↓+3H2S↑

(3)水解平衡的移動

加熱、加水可以促進鹽的水解,加入酸或鹼能抑止鹽的水解,另外,弱酸根陰離子與弱鹼陽離子相混合時相互促進水解。

三、離子反應

1、離子反應發生的條件

(1)生成沉澱

既有溶液中的離子直接結合為沉澱,又有沉澱的轉化。

(2)生成弱電解質

主要是H+與弱酸根生成弱酸,或OH-與弱鹼陽離子生成弱鹼,或H+與OH-生成H2O。

(3)生成氣體

生成弱酸時,很多弱酸能分解生成氣體。

(4)發生氧化還原反應

強氧化性的離子與強還原性離子易發生氧化還原反應,且大多在酸性條件下發生。

2、離子反應能否進行的理論判據

(1)根據焓變與熵變判據

對ΔH-TΔS<0的離子反應,室温下都能自發進行。

(2)根據平衡常數判據

離子反應的平衡常數很大時,表明反應的趨勢很大。

3、離子反應的應用

(1)判斷溶液中離子能否大量共存

相互間能發生反應的離子不能大量共存,注意題目中的隱含條件。

(2)用於物質的定性檢驗

根據離子的特性反應,主要是沉澱的顏色或氣體的生成,定性檢驗特徵性離子。

(3)用於離子的定量計算

常見的有酸鹼中和滴定法、氧化還原滴定法。

(4)生活中常見的離子反應。

硬水的形成及軟化涉及到的離子反應較多,主要有:

Ca2+、Mg2+的形成。

CaCO3+CO2+H2O=Ca2++2HCO3-

MgCO3+CO2+H2O=Mg2++2HCO3-

加熱煮沸法降低水的硬度:

Ca2++2HCO3-=CaCO3↓+CO2↑+H2O

Mg2++2HCO3-=MgCO3↓+CO2↑+H2O

或加入Na2CO3軟化硬水:

Ca2++CO32-=CaCO3↓,Mg2++CO32-=MgCO3↓

四、沉澱溶解平衡

1、沉澱溶解平衡與溶度積

(1)概念

當固體溶於水時,固體溶於水的速率和離子結合為固體的速率相等時,固體的溶解與沉澱的生成達到平衡狀態,稱為沉澱溶解平衡。其平衡常數叫做溶度積常數,簡稱溶度積,用Ksp表示。

PbI2(s)Pb2+(aq)+2I-(aq)

Ksp=[Pb2+][I-]2=7.1×10-9mol3·L-3

(2)溶度積Ksp的特點

Ksp只與難溶電解質的性質和温度有關,與沉澱的量無關,且溶液中離子濃度的變化能引起平衡移動,但並不改變溶度積。

Ksp反映了難溶電解質在水中的溶解能力。

2、沉澱溶解平衡的應用

(1)沉澱的溶解與生成

根據濃度商Qc與溶度積Ksp的大小比較,規則如下:

Qc=Ksp時,處於沉澱溶解平衡狀態。

Qc>Ksp時,溶液中的離子結合為沉澱至平衡。

Qc

(2)沉澱的轉化

根據溶度積的大小,可以將溶度積大的沉澱可轉化為溶度積更小的沉澱,這叫做沉澱的轉化。沉澱轉化實質為沉澱溶解平衡的移動。

第四章 電化學

一、化學能轉化為電能——電池

1、原電池的工作原理

(1)原電池的概念:

把化學能轉變為電能的裝置稱為原電池。

(2)Cu-Zn原電池的工作原理:

如圖為Cu-Zn原電池,其中Zn為負極,Cu為正極,構成閉合迴路後的現象是:Zn片逐漸溶解,Cu片上有氣泡產生,電流計指針發生偏轉。該原電池反應原理為:Zn失電子,負極反應為:Zn→Zn2++2e-;Cu得電子,正極反應為:2H++2e-→H2。電子定向移動形成電流。總反應為:Zn+CuSO4=ZnSO4+Cu。

(3)原電池的電能

若兩種金屬做電極,活潑金屬為負極,不活潑金屬為正極;若一種金屬和一種非金屬做電極,金屬為負極,非金屬為正極。

2、化學電源

(1)鋅錳乾電池

負極反應:Zn→Zn2++2e-;

正極反應:2NH4++2e-→2NH3+H2;

(2)鉛蓄電池

負極反應:Pb+SO42-=PbSO4+2e-

正極反應:PbO2+4H++SO42-+2e-=PbSO4+2H2O

放電時總反應:Pb+PbO2+2H2SO4=2PbSO4+2H2O。

充電時總反應:2PbSO4+2H2O=Pb+PbO2+2H2SO4。

(3)氫氧燃料電池

負極反應:2H2+4OH-→4H2O+4e-

正極反應:O2+2H2O+4e-→4OH-

電池總反應:2H2+O2=2H2O

二、電能轉化為化學能——電解

1、電解的原理

(1)電解的概念:

在直流電作用下,電解質在兩上電極上分別發生氧化反應和還原反應的過程叫做電解。電能轉化為化學能的裝置叫做電解池。

(2)電極反應:以電解熔融的NaCl為例:

陽極:與電源正極相連的電極稱為陽極,陽極發生氧化反應:2Cl-→Cl2↑+2e-。

陰極:與電源負極相連的電極稱為陰極,陰極發生還原反應:Na++e-→Na。

總方程式:2NaCl(熔)=(電解)2Na+Cl2↑

2、電解原理的應用

(1)電解食鹽水製備燒鹼、氯氣和氫氣。

陽極:2Cl-→Cl2+2e-

陰極:2H++e-→H2↑

總反應:2NaCl+2H2O

2NaOH+H2↑+Cl2↑

(2)銅的電解精煉。

粗銅(含Zn、Ni、Fe、Ag、Au、Pt)為陽極,精銅為陰極,CuSO4溶液為電解質溶液。

陽極反應:Cu→Cu2++2e-,還發生幾個副反應

Zn→Zn2++2e-;Ni→Ni2++2e-

Fe→Fe2++2e-

Au、Ag、Pt等不反應,沉積在電解池底部形成陽極泥。

陰極反應:Cu2++2e-→Cu

(3)電鍍:以鐵表面鍍銅為例

待鍍金屬Fe為陰極,鍍層金屬Cu為陽極,CuSO4溶液為電解質溶液。

陽極反應:Cu→Cu2++2e-

陰極反應: Cu2++2e-→Cu

3、金屬的腐蝕與防護

(1)金屬腐蝕

金屬表面與周圍物質發生化學反應或因電化學作用而遭到破壞的過程稱為金屬腐蝕。

(2)金屬腐蝕的電化學原理。

生鐵中含有碳,遇有雨水可形成原電池,鐵為負極,電極反應為:Fe→Fe2++2e-。水膜中溶解的氧氣被還原,正極反應為:O2+2H2O+4e-→4OH-,該腐蝕為“吸氧腐蝕”,總反應為:2Fe+O2+2H2O=2Fe(OH)2,Fe(OH)2又立即被氧化:4Fe(OH)2+2H2O+O2=4Fe(OH)3,Fe(OH)3分解轉化為鐵鏽。若水膜在酸度較高的環境下,正極反應為:2H++2e-→H2↑,該腐蝕稱為“析氫腐蝕”。

(3)金屬的防護

金屬處於乾燥的環境下,或在金屬表面刷油漆、陶瓷、瀝青、塑料及電鍍一層耐腐蝕性強的金屬防護層,破壞原電池形成的條件。從而達到對金屬的防護;也可以利用原電池原理,採用犧牲陽極保護法。也可以利用電解原理,採用外加電流陰極保護法。

化學選修4知識點總結3

一、焓變、反應熱

1.反應熱:一定條件下,一定物質的量的反應物之間完全反應所放出或吸收的熱量

2.焓變(ΔH)的意義:在恆壓條件下進行的化學反應的熱效應

(1)符號:△H

(2)單位:kJ/mol

3.產生原因:

化學鍵斷裂——吸熱

化學鍵形成——放熱

放出熱量的化學反應。(放熱>吸熱) △H 為“-”或△H<0

吸收熱量的化學反應。(吸熱>放熱)△H 為“+”或△H >0

常見的`放熱反應:

①所有的燃燒反應

②酸鹼中和反應

③大多數的化合反應

④金屬與酸的反應

⑤生石灰和水反應

⑥濃硫酸稀釋、氫氧化鈉固體溶解等

常見的吸熱反應:

① 晶體Ba(OH)2·8H2O與NH4Cl

② 大多數的分解反應

③ 以H2、CO、C為還原劑的氧化還原反應

④銨鹽溶解等

二、熱化學方程式

書寫化學方程式注意要點:

①熱化學方程式必須標出能量變化。

②熱化學方程式中必須標明反應物和生成物的聚集狀態(g,l,s分別表示固態,液態,氣態,水溶液中溶質用aq表示)

③熱化學反應方程式要指明反應時的温度和壓強。

④熱化學方程式中的化學計量數可以是整數,也可以是分數

⑤各物質係數加倍,△H加倍;反應逆向進行,△H改變符號,數值不變

三、燃燒熱

1.概念:25 ℃,101 kPa時,1 mol純物質完全燃燒生成穩定的化合物時所放出的熱量。燃燒熱的單位用kJ/mol表示。

注意以下幾點:

①研究條件:101 kPa

②反應程度:完全燃燒,產物是穩定的氧化物

③燃燒物的物質的量:1 mol

④研究內容:放出的熱量。(ΔH<0,單位kJ/mol)

四、中和熱

1.概念:在稀溶液中,酸跟鹼發生中和反應而生成1mol H2O,這時的反應熱叫中和熱。

2.強酸與強鹼的中和反應其實質是H+和OH-反應,其熱化學方程式為:

H+(aq)+OH-(aq)=H2O(l)

ΔH=-57.3kJ/mol

3.弱酸或弱鹼電離要吸收熱量,所以它們參加中和反應時的中和熱小於57.3kJ/mol。

4.中和熱的測定實驗

化學選修4知識點總結4

化學守恆

守恆是化學反應過程中所遵循的基本原則,在水溶液中的化學反應,會存在多種守恆關係,如電荷守恆、物料守恆、質子守恆等。

1.電荷守恆關係:

電荷守恆是指電解質溶液中,無論存在多少種離子,電解質溶液必須保持電中性,即溶液中陽離子所帶的正電荷總數與陰離子所帶的負電荷總數相等,用離子濃度代替電荷濃度可列等式。常用於溶液中離子濃度大小的比較或計算某離子的濃度等,例如:

①在NaHCO3溶液中:c(Na+)+c(H+)=c(OH-)+2c(CO32-)+c(HCO3-);

②在(NH4)2SO4溶液中:c(NH4+)+c(H+)=c(OH-)+c(SO42—)。

2.物料守恆關係:

物料守恆也就是元素守恆,電解質溶液中由於電離或水解因素,離子會發生變化變成其它離子或分子等,但離子或分子中某種特定元素的原子的總數是不會改變的。

可從加入電解質的化學式角度分析,各元素的原子存在守恆關係,要同時考慮鹽本身的電離、鹽的水解及離子配比關係。例如:

①在NaHCO3溶液中:c(Na+)=c(CO32-)+c(HCO3-)+c(H2CO3);

②在NH4Cl溶液中:c(Cl-)=c(NH4+)+c(NH3·H2O)。

3.質子守恆關係:

酸鹼反應達到平衡時,酸(含廣義酸)失去質子(H+)的`總數等於鹼(或廣義鹼)得到的質子(H+)總數,這種得失質子(H+)數相等的關係就稱為質子守恆。

在鹽溶液中,溶劑水也發生電離:H2OH++OH-,從水分子角度分析:H2O電離出來的H+總數與H2O電離出來的OH—總數相等(這裏包括已被其它離子結合的部分),可由電荷守恆和物料守恆推導,例如:

①在NaHCO3溶液中:c(OH-)=c(H+)+c(CO32-)+c(H2CO3);

②在NH4Cl溶液中:c(H+)=c(OH-)+c(NH3·H2O)。

綜上所述,化學守恆的觀念是分析溶液中存在的微粒關係的重要觀念,也是解決溶液中微粒濃度關係問題的重要依據。

化學選修4知識點總結5

第一章 化學反應與能量

考點1:吸熱反應與放熱反應

1、吸熱反應與放熱反應的區別

特別注意:反應是吸熱還是放熱與反應的條件沒有必然的聯繫,而決定於反應物和生成物具有的總能量(或焓)的相對大小。

2、常見的放熱反應

①一切燃燒反應;

②活潑金屬與酸或水的反應;

③酸鹼中和反應;

④鋁熱反應;

⑤大多數化合反應(但有些化合反應是吸熱反應,如:N2+O2=2NO,CO2+C=2CO等均為吸熱反應)。

3、常見的吸熱反應

①Ba(OH)2·8H2O與NH4Cl反應;

②大多數分解反應是吸熱反應

③等也是吸熱反應;

④水解反應

考點2:反應熱計算的依據

1.根據熱化學方程式計算

反應熱與反應物各物質的物質的量成正比。

2.根據反應物和生成物的總能量計算

ΔH=E生成物-E反應物。

3.根據鍵能計算

ΔH=反應物的鍵能總和-生成物的鍵能總和。

4.根據蓋斯定律計算

化學反應的反應熱只與反應的始態(各反應物)和終態(各生成物)有關,而與反應的途徑無關。即如果一個反應可以分步進行,則各分步反應的反應熱之和與該反應一步完成時的反應熱是相同的。

温馨提示:

①蓋斯定律的主要用途是用已知反應的反應熱來推知相關反應的反應熱。

②熱化學方程式之間的“+”“-”等數學運算,對應ΔH也進行“+”“-”等數學計算。

5.根據物質燃燒放熱數值計算:Q(放)=n(可燃物)×|ΔH|。

第二章 化學反應速率與化學平衡

考點1:化學反應速率

1、化學反應速率的表示方法___________。

化學反應速率通常用單位時間內反應物濃度和生成物濃度的變化來表示。表達式:___________ 。

其常用的單位是__________ 、或__________ 。

2、影響化學反應速率的因素

1)內因(主要因素)

反應物本身的性質。

2)外因(其他條件不變,只改變一個條件)

3、理論解釋——有效碰撞理論

(1)活化分子、活化能、有效碰撞

①活化分子:能夠發生有效碰撞的分子。

②活化能:如圖

圖中:E1為正反應的活化能,使用催化劑時的活化能為E3,反應熱為E1-E2。(注:E2為逆反應的活化能)

③有效碰撞:活化分子之間能夠引發化學反應的碰撞。

(2)活化分子、有效碰撞與反應速率的關係

考點2:化學平衡

1、化學平衡狀態:一定條件(恆温、恆容或恆壓)下的可逆反應裏,正反應和逆反應的速率相等,反應混合物(包括反應物和生成物)中各組分的濃度保持不變的狀態。

2、化學平衡狀態的特徵

3、判斷化學平衡狀態的依據

考點3:化學平衡的移動

1、概念

可逆反應中舊化學平衡的破壞、新化學平衡的建立,由原平衡狀態向新化學平衡狀態的轉化過程,稱為化學平衡的移動。

2、化學平衡移動與化學反應速率的關係

(1)v正>v逆:平衡向正反應方向移動。

(2)v正=v逆:反應達到平衡狀態,不發生平衡移動。

(3)v正

3、影響化學平衡的因素

4、“惰性氣體”對化學平衡的影響

①恆温、恆容條件

原平衡體系體系總壓強增大―→體系中各組分的濃度不變―→平衡不移動。

②恆温、恆壓條件

原平衡體系容器容積增大,各反應氣體的分壓減小―→體系中各組分的濃度同倍數減小

5、勒夏特列原理

定義:如果改變影響平衡的一個條件(如C、P或T等),平衡就向能夠減弱這種改變的方向移動。

原理適用的範圍:已達平衡的體系、所有的平衡狀態(如溶解平衡、化學平衡、電離平衡、水解平衡等)和只限於改變影響平衡的一個條件。

勒夏特列原理中“減弱這種改變”的解釋:外界條件改變使平衡發生移動的結果,是減弱對這種條件的改變,而不是抵消這種改變,也就是説:外界因素對平衡體系的影響佔主要方面。

第三章 水溶液中的離子平衡

一、弱電解質的電離

1、定義:電解質:在水溶液中或熔化狀態下能導電的化合物,叫電解質。

非電解質:在水溶液中或熔化狀態下都不能導電的化合物。

強電解質:在水溶液裏全部電離成離子的電解質。

弱電解質:在水溶液裏只有一部分分子電離成離子的電解質。

2、電解質與非電解質本質區別:

電解質——離子化合物或共價化合物 非電解質——共價化合物

注意:①電解質、非電解質都是化合物 ②SO2、NH3、CO2等屬於非電解質

③強電解質不等於易溶於水的化合物(如BaSO4不溶於水,但溶於水的BaSO4全部電離,故BaSO4 為強電解質)——電解質的強弱與導電性、溶解性無關。

3、電離平衡:在一定的條件下,當電解質分子電離成 離子的速率 和離子結合成 時,電離過程就達到了平衡狀態 ,這叫電離平衡。

4、影響電離平衡的因素:

A、温度:電離一般吸熱,升温有利於電離。

B、濃度:濃度越大,電離程度 越小 ;溶液稀釋時,電離平衡向着電離的方向移動。C、同離子效應:在弱電解質溶液里加入與弱電解質具有相同離子的電解質,會減弱電離。D、其他外加試劑:加入能與弱電解質的電離產生的某種離子反應的物質時,有利於電離。

5、電離方程式的書寫:用可逆符號 弱酸的電離要分佈寫(第一步為主)

6、電離常數:在一定條件下,弱電解質在達到電離平衡時,溶液中電離所生成的各種離子濃度的乘積,跟溶液中未電離的分子濃度的比是一個常數。叫做電離平衡常數,(一般用Ka表示酸,Kb表示鹼。)

表示方法:ABA++B- Ki=[ A+][B-]/[AB]

7、影響因素:

a、電離常數的大小主要由物質的本性決定。

b、電離常數受温度變化影響,不受濃度變化影響,在室温下一般變化不大。

C、同一温度下,不同弱酸,電離常數越大,其電離程度越大,酸性越強。如:H2SO3>H3PO4>HF>CH3COOH>H2CO3>H2S>HClO

二、水的電離和溶液的酸鹼性

1、水電離平衡:

水的離子積:KW= c[H+]·c[OH-]

25℃時,[H+]=[OH-] =10-7 mol/L ; KW= [H+]·[OH-] = 1x10-14

注意:KW只與温度有關,温度一定,則KW值一定

KW不僅適用於純水,適用於任何溶液(酸、鹼、鹽)

2、水電離特點:(1)可逆(2)吸熱(3)極弱

3、影響水電離平衡的外界因素:

①酸、鹼:抑制水的電離 KW〈1x10-14

②温度:促進水的電離(水的電離是 吸 熱的)

③易水解的鹽:促進水的電離 KW 〉1x10-14

4、溶液的酸鹼性和pH:

(1)pH=-lgc[H+]

(2)pH的測定方法:

酸鹼指示劑—— 甲基橙 、石蕊 、酚酞 。

變色範圍:甲基橙3.1~4.4(橙色) 石蕊5.0~8.0(紫色) 酚酞8.2~10.0(淺紅色)

pH試紙—操作 玻璃棒蘸取未知液體在試紙上,然後與標準比色卡對比即可 。

注意:①事先不能用水濕潤PH試紙;②廣泛pH試紙只能讀取整數值或範圍

三、混合液的pH值計算方法公式

1、強酸與強酸的混合:(先求[H+]混:將兩種酸中的H+離子物質的量相加除以總體積,再求其它) [H+]混=([H+]1V1+[H+]2V2)/(V1+V2)

2、強鹼與強鹼的混合:(先求[OH-]混:將兩種酸中的OH離子物質的量相加除以總體積,再求其它) [OH-]混=([OH-]1V1+[OH-]2V2)/(V1+V2) (注意:不能直接計算[H+]混)

3、強酸與強鹼的混合:(先據H++ OH-==H2O計算餘下的H+或OH-,①H+有餘,則用餘下的H+數除以溶液總體積求[H+]混;OH-有餘,則用餘下的OH-數除以溶液總體積求[OH-]混,再求其它)

四、稀釋過程溶液pH值的變化規律:

1、強酸溶液:稀釋10n倍時,pH稀=pH原+n (但始終不能大於或等於7)

2、弱酸溶液:稀釋10n倍時,pH稀〈pH原+n (但始終不能大於或等於7)

3、強鹼溶液:稀釋10n倍時,pH稀=pH原-n (但始終不能小於或等於7)

4、弱鹼溶液:稀釋10n倍時,pH稀〉pH原-n (但始終不能小於或等於7)

5、不論任何溶液,稀釋時pH均是向7靠近(即向中性靠近);任何溶液無限稀釋後pH均接近7

6、稀釋時,弱酸、弱鹼和水解的鹽溶液的pH變化得慢,強酸、強鹼變化得快。

五、強酸(pH1)強鹼(pH2)混和計算規律w

1、若等體積混合

pH1+pH2=14 則溶液顯中性pH=7

pH1+pH2≥15 則溶液顯鹼性pH=pH2-0.3

pH1+pH2≤13 則溶液顯酸性pH=pH1+0.3

2、若混合後顯中性

pH1+pH2=14 V酸:V鹼=1:1

pH1+pH2≠14 V酸:V鹼=1:10〔14-(pH1+pH2)〕

六、酸鹼中和滴定:

1、中和滴定的原理

實質:H++OH—=H2O 即酸能提供的H+和鹼能提供的OH-物質的量相等。

2、中和滴定的操作過程:

(1)儀②滴定管的刻度,O刻度在上 ,往下刻度標數越來越大,全部容積 大於 它的最大刻度值,因為下端有一部分沒有刻度。滴定時,所用溶液不得超過最低刻度,不得一次滴定使用兩滴定管酸(或鹼),也不得中途向滴定管中添加。②滴定管可以讀到小數點後 一位 。

(2)藥品:標準液;待測液;指示劑。

(3)準備過程:

準備:檢漏、洗滌、潤洗、裝液、趕氣泡、調液麪。(洗滌:用洗液洗→檢漏:滴定管是否漏水→用水洗→用標準液洗(或待測液洗)→裝溶液→排氣泡→調液麪→記數據V(始)

(4)試驗過程

3、酸鹼中和滴定的誤差分析

誤差分析:利用n酸c酸V酸=n鹼c鹼V鹼進行分析

式中:n——酸或鹼中氫原子或氫氧根離子數;c——酸或鹼的物質的量濃度;

V——酸或鹼溶液的體積。當用酸去滴定鹼確定鹼的濃度時,則:

c鹼=

上述公式在求算濃度時很方便,而在分析誤差時起主要作用的是分子上的V酸的變化,因為在滴定過程中c酸為標準酸,其數值在理論上是不變的,若稀釋了雖實際值變小,但體現的卻是V酸的增大,導致c酸偏高;V鹼同樣也是一個定值,它是用標準的量器量好後注入錐形瓶中的,當在實際操作中鹼液外濺,其實際值減小,但引起變化的卻是標準酸用量的減少,即V酸減小,則c鹼降低了;對於觀察中出現的誤差亦同樣如此。綜上所述,當用標準酸來測定鹼的濃度時,c鹼的誤差與V酸的.變化成正比,即當V酸的實測值大於理論值時,c鹼偏高,反之偏低。

同理,用標準鹼來滴定未知濃度的酸時亦然。

七、鹽類的水解(只有可溶於水的鹽才水解)

1、鹽類水解:在水溶液中鹽電離出來的離子跟水電離出來的H+或OH-結合生成弱電解質的反應。

2、水解的實質: 水溶液中鹽電離出來的離子跟水電離出來的H+或OH-結合,破壞水的電離,是平衡向右移動,促進水的電離。

3、鹽類水解規律:

①有弱 才水解,無弱不水解,越弱越水解;誰 強顯誰性,兩弱都水解,同強顯中性。

②多元弱酸根,濃度相同時正酸根比酸式酸根水解程度大,鹼性更強。 (如:Na2CO3>NaHCO3)

4、鹽類水解的特點:(1)可逆(與中和反應互逆)(2)程度小(3)吸熱

5、影響鹽類水解的外界因素:

①温度:温度越 高 水解程度越大(水解吸熱,越熱越水解)

②濃度:濃度越小,水解程度越 大 (越稀越水解)

③酸鹼:促進或抑制鹽的水解(H+促進 陰離子 水解而 抑制 陽離子水解;OH-促進陽離子水解而抑制陰離子水解)

6、酸式鹽溶液的酸鹼性:

①只電離不水解:如HSO4- 顯 酸 性

②電離程度>水解程度,顯 酸 性 (如: HSO3-、H2PO4-)

③水解程度>電離程度,顯 鹼 性(如:HCO3-、HS-、HPO42-)

7、雙水解反應:

(1)構成鹽的陰陽離子均能發生水解的反應。雙水解反應相互促進,水解程度較大,有的甚至水解完全。使得平衡向右移。

(2)常見的雙水解反應完全的為:Fe3+、Al3+與AlO2-、CO32-(HCO3-)、S2-(HS-)、SO32-(HSO3-);S2-與NH4+;CO32-(HCO3-)與NH4+其特點是相互水解成沉澱或氣體。雙水解完全的離子方程式配平依據是兩邊電荷平衡,如:2Al3++ 3S2- + 6H2O == 2Al(OH)3↓+3H2S↑

8、鹽類水解的應用:

水解的應用

實例

原理

1、淨水

明礬淨水

Al3++3H2O Al(OH)3(膠體)+3H+

2、去油污

用熱鹼水冼油污物品

CO32-+H2O HCO3-+OH-

3、藥品的保存

①配製FeCl3溶液時常加入少量鹽酸

Fe3++3H2O Fe(OH)3+3H+

②配製Na2CO3溶液時常加入少量NaOH

CO32-+H2O HCO3-+OH-

4、製備無水鹽

由MgCl2·6H2O制無水MgCl2 在HCl氣流中加熱

若不然,則:

MgCl2·6H2OMg(OH)2+2HCl+4H2O

Mg(OH)2MgO+H2O

5、泡沫滅火器

用Al2(SO4)3與NaHCO3溶液混合

Al3++3HCO3-=Al(OH)3↓+3CO2↑

6、比較鹽溶液中離子濃度的大小

比較NH4Cl溶液中離子濃度的大小

NH4++H2O NH3·H2O+H+

c(Cl-)>c(NH4+)>c(H+)>c(OH)-

9、水解平衡常數(Kh)

對於強鹼弱酸鹽:Kh=Kw/Ka(Kw為該温度下水的離子積,Ka為該條件下該弱酸根形成的弱酸的電離平衡常數)

對於強酸弱鹼鹽:Kh=Kw/Kb(Kw為該温度下水的離子積,Kb為該條件下該弱鹼根形成的弱鹼的電離平衡常數)

電離、水解方程式的書寫原則

1)、多元弱酸(多元弱酸鹽)的電離(水解)的書寫原則:分步書寫

注意:不管是水解還是電離,都決定於第一步,第二步一般相當微弱。

2)、多元弱鹼(多元弱鹼鹽)的電離(水解)書寫原則:一步書寫

八、溶液中微粒濃度的大小比較

基本原則:抓住溶液中微粒濃度必須滿足的三種守恆關係:

①電荷守恆::任何溶液均顯電 中 性,各陽離子濃度與其所帶電荷數的乘積之和=各陰離子濃度與其所帶電荷數的乘積之和

②物料守恆:(即原子個數守恆或質量守恆)

某原子的總量(或總濃度)=其以各種形式存在的所有微粒的量(或濃度)之和

③質子守恆:即水電離出的H+濃度與OH-濃度相等。

九、難溶電解質的溶解平衡

1、難溶電解質的溶解平衡的一些常見知識

(1)溶解度 小於 0.01g的電解質稱難溶電解質。

(2)反應後離子濃度降至1x10-5以下的反應為完全反應。如酸鹼中和時[H+]降至10-7mol/L<10-5mol/L,故為完全反應,用“=”,常見的難溶物在水中的離子濃度均遠低於10-5mol/L,故均用“=”。

(3)難溶並非不溶,任何難溶物在水中均存在溶解平衡。

(4)掌握三種微溶物質:CaSO4、Ca(OH)2、Ag2SO4

(5)溶解平衡常為吸熱,但Ca(OH)2為放熱,升温其溶解度減少。

(6)溶解平衡存在的前提是:必須存在沉澱,否則不存在平衡。

2、溶解平衡方程式的書寫

意在沉澱後用(s)標明狀態,並用“”。如:Ag2S(s) 2Ag+(aq)+S2-(aq)

3、沉澱生成的三種主要方式

(1)加沉澱劑法:Ksp越小(即沉澱越難溶),沉澱越完全;沉澱劑過量能使沉澱更完全。

(2)調pH值除某些易水解的金屬陽離子:如加MgO除去MgCl2溶液中FeCl3。

(3)氧化還原沉澱法:

(4)同離子效應法

4、沉澱的溶解:

沉澱的溶解就是使溶解平衡正向移動。常採用的方法有:①酸鹼;②氧化還原;③沉澱轉化。

5、沉澱的轉化:

溶解度大的生成溶解度小的,溶解度小的生成溶解度更小的。

如:AgNO3 →AgCl(白色沉澱)→ AgBr(淡黃色)→AgI (黃色)→ Ag2S(黑色)

6、溶度積(Ksp)

1)、定義:在一定條件下,難溶電解質電解質溶解成離子的速率等於離子重新結合成沉澱的速率,溶液中各離子的濃度保持不變的狀態。

2)、表達式:AmBn(s) mAn+(aq)+nBm-(aq)

Ksp= [c(An+)]m [c(Bm-)]n

3)、影響因素:

外因:①濃度:加水,平衡向溶解方向移動。

②温度:升温,多數平衡向溶解方向移動。

4)、溶度積規則

QC(離子積)>KSP 有沉澱析出

QC=KSP平衡狀態

QC

第四章 電化學

1.原電池的工作原理及應用

1.概念和反應本質

原電池是把化學能轉化為電能的裝置,其反應本質是氧化還原反應。

2.原電池的構成條件

(1)一看反應:看是否有能自發進行的氧化還原反應發生(一般是活潑性強的金屬與電解質溶液反應)。

(2)二看兩電極:一般是活潑性不同的兩電極。

(3)三看是否形成閉合迴路,形成閉合迴路需三個條件:①電解質溶液;②兩電極直接或間接接觸;③兩電極插入電解質溶液中。

3.工作原理

以鋅銅原電池為例

(1)反應原理

電極名稱

負極

正極

電極材料

鋅片

銅片

電極反應

Zn-2e-===Zn2+

Cu2++2e-===Cu

反應類型

氧化反應

還原反應

電子流向

由Zn片沿導線流向Cu片

鹽橋中離子移向

鹽橋含飽和KCl溶液,K+移向正極,Cl-移向負極

(2)鹽橋的組成和作用

①鹽橋中裝有飽和的KCl、KNO3等溶液和瓊膠製成的膠凍。

②鹽橋的作用:a.連接內電路,形成閉合迴路;b.平衡電荷,使原電池不斷產生電流。

2.電解的原理

1.電解和電解池

(1)電解:在電流作用下,電解質在兩個電極上分別發生氧化反應和還原反應的過程。

(2)電解池:電能轉化為化學能的裝置。

(3)電解池的構成

①有與電源相連的兩個電極。

②電解質溶液(或熔融電解質)。

③形成閉合迴路。

2.電解池的工作原理

(1)電極名稱及電極反應式(電解CuCl2溶液為例)

總反應式:

(2)電子和離子的移動方向

①電子:從電源負極流出後,流向電解池陰極;從電解池的陽極流出後流向電源的正極。

②離子:陽離子移向電解池的陰極,陰離子移向電解池的陽極。

3.陰陽兩極上放電順序

(1)陰極:(與電極材料無關)。氧化性強的先放電,放電順序:

(2)陽極:若是活性電極作陽極,則活性電極首先失電子,發生氧化反應。

若是惰性電極作陽極,放電順序為

3.化學電源

1.日常生活中的三種電池

(1)鹼性鋅錳乾電池——一次電池

正極反應:2MnO2+2H2O+2e-===2MnOOH+2OH-;

負極反應:Zn+2OH--2e-===Zn(OH)2;

總反應:Zn+2MnO2+2H2O===2MnOOH+Zn(OH)2。

(2)鋅銀電池——一次電池

負極反應:Zn+2OH--2e-===Zn(OH)2;

正極反應:Ag2O+H2O+2e-===2Ag+2OH-;

總反應:Zn+Ag2O+H2O===Zn(OH)2+2Ag。

(3)二次電池(可充電電池)

鉛蓄電池是最常見的二次電池,負極材料是Pb,正極材料是PbO2。

①放電時的反應

a.負極反應:Pb+SO42--2e-===PbSO4;

b.正極反應:PbO2+4H++SO42-+2e-===PbSO4+2H2O;

c.總反應:Pb+PbO2+2H2SO4===2PbSO4+2H2O。

②充電時的反應

a.陰極反應:PbSO4+2e-===Pb+SO42-;

b.陽極反應:PbSO4+2H2O-2e-===PbO2+4H++SO42-;

c.總反應:2PbSO4+2H2O電解=====Pb+PbO2+2H2SO4。

注 可充電電池的充、放電不能理解為可逆反應。

2.“高效、環境友好”的燃料電池

氫氧燃料電池是目前最成熟的燃料電池,可分酸性和鹼性兩種。

種類

酸性

鹼性

負極反應式

2H2-4e-===4H+

2H2+4OH--4e-===4H2O

正極反應式

O2+4e-+4H+===2H2O

O2+2H2O+4e-===4OH-

電池總反應式

2H2+O2===2H2O

備註

燃料電池的電極不參與反應,有很強的催化活性,起導電作用

4.電解原理的應用

1.氯鹼工業

(1)電極反應

陽極反應式:2Cl--2e-===Cl2↑(氧化反應)

陰極反應式:2H++2e-===H2↑(還原反應)

(2)總反應方程式

2NaCl+2H2O2NaOH+H2↑+Cl2↑

(3)氯鹼工業生產流程圖

2.電鍍

下圖為金屬表面鍍銀的工作示意圖,據此回答下列問題:

(1)鍍件作陰極,鍍層金屬銀作陽極。

(2)電解質溶液是AgNO3溶液等含鍍層金屬陽離子的鹽溶液。

(3)電極反應:

陽極:Ag-e-===Ag+;

陰極:Ag++e-===Ag。

(4)特點:陽極溶解,陰極沉積,電鍍液的濃度不變。

3.電解精煉銅

(1)電極材料:陽極為粗銅;陰極為純銅。

(2)電解質溶液:含Cu2+的鹽溶液。

(3)電極反應:

陽極:Zn-2e-===Zn2+、Fe-2e-===Fe2+、Ni-2e-===Ni2+、Cu-2e-===Cu2+;

陰極:Cu2++2e-===Cu。

4.電冶金

利用電解熔融鹽的方法來冶煉活潑金屬Na、Ca、Mg、Al等。

(1)冶煉鈉

2NaCl(熔融)2Na+Cl2↑

電極反應:

陽極:2Cl--2e-===Cl2↑;陰極:2Na++2e-===2Na。

(2)冶煉鋁

2Al2O3(熔融)4Al+3O2↑

電極反應:

陽極:6O2--12e-===3O2↑;

陰極:4Al3++12e-===4Al。

5.金屬的腐蝕與防護

1.金屬腐蝕的本質

金屬原子失去電子變為金屬陽離子,金屬發生氧化反應。

2.金屬腐蝕的類型

(1)化學腐蝕與電化學腐蝕

類型

化學腐蝕

電化學腐蝕

條件

金屬跟非金屬單質直接接觸

不純金屬或合金跟電解質溶液接觸

現象

無電流產生

有微弱電流產生

本質

金屬被氧化

較活潑金屬被氧化

聯繫

兩者往往同時發生,電化學腐蝕更普遍

(2)析氫腐蝕與吸氧腐蝕

鋼鐵的腐蝕為例進行分析:

類型

析氫腐蝕

吸氧腐蝕

條件

水膜酸性較強(pH≤4.3)

水膜酸性很弱或呈中性

電極反應

負極

Fe-2e-===Fe2+

正極

2H++2e-===H2↑

O2+2H2O+4e-===4OH-

總反應式

Fe+2H+===Fe2++H2↑

2Fe+O2+2H2O===2Fe(OH)2

聯繫

吸氧腐蝕更普遍

3.金屬的防護

(1)電化學防護

①犧牲陽極的陰極保護法—原電池原理

a.負極:比被保護金屬活潑的金屬;

b.正極:被保護的金屬設備。

②外加電流的陰極保護法—電解原理

a.陰極:被保護的金屬設備;

b.陽極:惰性金屬或石墨。

(2)改變金屬的內部結構,如製成合金、不鏽鋼等。

(3)加防護層,如在金屬表面噴油漆、塗油脂、電鍍、噴鍍或表面鈍化等方法。

化學選修4知識點總結6

有機化學計算

1、有機物化學式的確定

(1)確定有機物的式量的方法

①根據標準狀況下氣體的密度ρ,求算該氣體的式量:M = 22·4ρ(標準狀況)

②根據氣體A對氣體B的相對密度D,求算氣體A的式量:MA = DMB

③求混合物的平均式量:M = m(混總)/n(混總)

④根據化學反應方程式計算烴的式量。

⑤應用原子個數較少的`元素的質量分數,在假設它們的個數為1、2、3時,求出式量。

(2)確定化學式的方法

①根據式量和最簡式確定有機物的分子式。

②根據式量,計算一個分子中各元素的原子個數,確定有機物的分子式。

③當能夠確定有機物的類別時。可以根據有機物的通式,求算n值,確定分子式。

④根據混合物的平均式量,推算混合物中有機物的分子式。

(3)確定有機物化學式的一般途徑

(4)有關烴的混合物計算的幾條規律

①若平均式量小於26,則一定有CH4

②平均分子組成中,l < n(C)< 2,則一定有CH4。

③平均分子組成中,2 < n(H)< 4,則一定有C2H2。

化學選修4知識點總結7

離子共存

1、由於發生複分解反應,離子不能大量共存。

(1)有氣體產生。

如CO32—、SO32—、S2—、HCO3—、HSO3—、HS—等易揮發的弱酸的酸根與H+不能大量共存。

(2)有沉澱生成。

如Ba2+、Ca2+、Mg2+、Ag+等不能與SO42—、CO32—等大量共存;Mg2+、Fe2+、Ag+、Al3+、Zn2+、Cu2+、Fe3+等不能與OH—大量共存;Pb2+與Cl—,Fe2+與S2—、Ca2+與PO43—、Ag+與I—不能大量共存。

(3)有弱電解質生成。

如OH—、CH3COO—、PO43—、HPO42—、H2PO4—、F—、ClO—、AlO2—、SiO32—、CN—、C17H35COO—、等與H+不能大量共存;一些酸式弱酸根如HCO3—、HPO42—、HS—、H2PO4—、HSO3—不能與OH—大量共存;NH4+與OH—不能大量共存。

(4)一些容易發生水解的離子,在溶液中的存在是有條件的'。

如AlO2—、S2—、CO32—、C6H5O—等必須在鹼性條件下才能在溶液中存在;如Fe3+、Al3+等必須在酸性條件下才能在溶液中存在。這兩類離子不能同時存在在同一溶液中,即離子間能發生“雙水解”反應。如3AlO2—+3Al3++6H2O=4Al(OH)3↓等。

2、由於發生氧化還原反應,離子不能大量共存。

(1)具有較強還原性的離子不能與具有較強氧化性的離子大量共存。如S2—、HS—、SO32—、I—和Fe3+不能大量共存。

(2)在酸性或鹼性的介質中由於發生氧化還原反應而不能大量共存。如MnO4—、Cr2O7—、NO3—、ClO—與S2—、HS—、SO32—、HSO3—、I—、Fe2+等不能大量共存;SO32—和S2—在鹼性條件下可以共存,但在酸性條件下則由於發生2S2—+SO32—+6H+=3S↓+3H2O反應不能共在。H+與S2O32—不能大量共存。

3、能水解的陽離子跟能水解的陰離子在水溶液中不能大量共存(雙水解)。

例:Al3+和HCO3—、CO32—、HS—、S2—、AlO2—、ClO—等;Fe3+與CO32—、HCO3—、AlO2—、ClO—等不能大量共存。

4、溶液中能發生絡合反應的離子不能大量共存。

如Fe3+與SCN—不能大量共存;

化學選修4知識點總結8

一、化學反應的限度

1、化學平衡常數

(1)對達到平衡的可逆反應,生成物濃度的係數次方的乘積與反應物濃度的係數次方的乘積之比為一常數,該常數稱為化學平衡常數,用符號K表示。

(2)平衡常數K的大小反映了化學反應可能進行的程度(即反應限度),平衡常數越大,説明反應可以進行得越完全。

(3)平衡常數表達式與化學方程式的書寫方式有關。對於給定的可逆反應,正逆反應的平衡常數互為倒數。

(4)藉助平衡常數,可以判斷反應是否到平衡狀態:當反應的濃度商Qc與平衡常數Kc相等時,説明反應達到平衡狀態。

2、反應的平衡轉化率

(1)平衡轉化率是用轉化的反應物的濃度與該反應物初始濃度的比值來表示。如反應物A的平衡轉化率的表達式為:

α(A)=

(2)平衡正向移動不一定使反應物的平衡轉化率提高。提高一種反應物的`濃度,可使另一反應物的平衡轉化率提高。

(3)平衡常數與反應物的平衡轉化率之間可以相互計算。

3、反應條件對化學平衡的影響

(1)温度的影響

升高温度使化學平衡向吸熱方向移動;降低温度使化學平衡向放熱方向移動。温度對化學平衡的影響是通過改變平衡常數實現的。

(2)濃度的影響

增大生成物濃度或減小反應物濃度,平衡向逆反應方向移動;增大反應物濃度或減小生成物濃度,平衡向正反應方向移動。

温度一定時,改變濃度能引起平衡移動,但平衡常數不變。化工生產中,常通過增加某一價廉易得的反應物濃度,來提高另一昂貴的反應物的轉化率。

(3)壓強的影響

ΔVg=0的反應,改變壓強,化學平衡狀態不變。

ΔVg≠0的反應,增大壓強,化學平衡向氣態物質體積減小的方向移動。

(4)勒夏特列原理

由温度、濃度、壓強對平衡移動的影響可得出勒夏特列原理:如果改變影響平衡的一個條件(濃度、壓強、温度等)平衡向能夠減弱這種改變的方向移動。

化學選修4知識點總結9

化學反應的速率

1、化學反應是怎樣進行的

(1)基元反應:能夠一步完成的反應稱為基元反應,大多數化學反應都是分幾步完成的。

(2)反應歷程:平時寫的化學方程式是由幾個基元反應組成的總反應。總反應中用基元反應構成的反應序列稱為反應歷程,又稱反應機理。

(3)不同反應的反應歷程不同。同一反應在不同條件下的反應歷程也可能不同,反應歷程的差別又造成了反應速率的不同。

2、化學反應速率

(1)概念:單位時間內反應物的減小量或生成物的增加量可以表示反應的'快慢,即反應的速率,用符號v表示。

(2)表達式:

(3)特點對某一具體反應,用不同物質表示化學反應速率時所得的數值可能不同,但各物質表示的化學反應速率之比等於化學方程式中各物質的係數之比。

3、濃度對反應速率的影響

(1)反應速率常數(K)反應速率常數(K)表示單位濃度下的化學反應速率,通常,反應速率常數越大,反應進行得越快。反應速率常數與濃度無關,受温度、催化劑、固體表面性質等因素的影響。

(2)濃度對反應速率的影響增大反應物濃度,正反應速率增大,減小反應物濃度,正反應速率減小。增大生成物濃度,逆反應速率增大,減小生成物濃度,逆反應速率減小。

(3)壓強對反應速率的影響壓強隻影響氣體,對只涉及固體、液體的反應,壓強的改變對反應速率幾乎無影響。壓強對反應速率的影響,實際上是濃度對反應速率的影響,因為壓強的改變是通過改變容器容積引起的。壓縮容器容積,氣體壓強增大,氣體物質的濃度都增大,正、逆反應速率都增加;增大容器容積,氣體壓強減小;氣體物質的濃度都減小,正、逆反應速率都減小。

4、温度對化學反應速率的影響

(1)經驗公式阿倫尼烏斯總結出了反應速率常數與温度之間關係的經驗公式:式中A為比例係數,e為自然對數的底,R為摩爾氣體常數量,Ea為活化能。由公式知,當Ea>0時,升高温度,反應速率常數增大,化學反應速率也隨之增大。可知,温度對化學反應速率的影響與活化能有關。

(2)活化能Ea。活化能Ea是活化分子的平均能量與反應物分子平均能量之差。不同反應的活化能不同,有的相差很大。活化能Ea值越大,改變温度對反應速率的影響越大。

5、催化劑對化學反應速率的影響

(1)催化劑對化學反應速率影響的規律:催化劑大多能加快反應速率,原因是催化劑能通過參加反應,改變反應歷程,降低反應的活化能來有效提高反應速率。

(2)催化劑的特點:催化劑能加快反應速率而在反應前後本身的質量和化學性質不變。催化劑具有選擇性。催化劑不能改變化學反應的平衡常數,不引起化學平衡的移動,不能改變平衡轉化率。

標籤: 知識點 選修
  • 文章版權屬於文章作者所有,轉載請註明 https://xuewengu.com/flxz/zongjie/n5y5pm.html